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one of the primary efforts in influenza vaccine strain recommendation is to monitor through gene 
sequencing the viral surface protein haemagglutinin (HA) variants that lead to viral antigenic 
changes. Here we have developed a computational method, denoted as PREDAC, to predict 
antigenic clusters of influenza A (H3n2) viruses with high accuracy from viral HA sequences. 
Application of PREDAC to large-scale HA sequence data of H3n2 viruses isolated from diverse 
regions of mainland China identified 17 antigenic clusters that have dominated for at least one 
season between 1968 and 2010. By tracking the dynamics of the dominant antigenic clusters, 
we not only find that dominant antigenic clusters change more frequently in China than in the 
united states/Europe, but also characterize the antigenic patterns of seasonal H3n2 viruses 
within China. Furthermore, we demonstrate that the coupling of large-scale HA sequencing 
with PREDAC can significantly improve vaccine strain recommendation for China. 

1 Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. 2 Graduate School of 
the Chinese Academy of Sciences, Beijing 100080, China. 3 State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral 
Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. *These authors contributed equally to 
this work. Correspondence and requests for materials should be addressed to Y.S. (email: yshu@cnic.org.cn) or to T.J. (email: taijiao@moon.ibp.ac.cn). 

mapping of H3n2 influenza antigenic evolution 
in China reveals a strategy for vaccine strain 
recommendation
Xiangjun Du1,2,*, Libo Dong3,*, Yu Lan3, Yousong Peng1,2, Aiping Wu1, Ye Zhang3, Weijuan Huang3,  
Dayan Wang3, min Wang3, Yuanji Guo3, Yuelong shu3 & Taijiao Jiang1



ARTICLE

��

nATuRE CommunICATIons | DoI: 10.1038/ncomms1710

nATuRE CommunICATIons | 3:709 | DoI: 10.1038/ncomms1710 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

The seasonal influenza viruses have caused and will continue to 
cause significant threat to public health, resulting in about three 
to five million cases of severe illness, and about 250,000–500,000 

deaths worldwide each year1. At present, massive vaccination is the 
most effective way to prevent and control the influenza annual epidem-
ics. To achieve effective cross-protection, the antigenicity of a vaccine 
strain is required to match that of future circulating strains. Unfortu-
nately, the timely and accurate selection of vaccine strains is challeng-
ing because the influenza virus changes its antigenicity rapidly by either 
mutation or reassortment2,3. As a result, influenza vaccines have to 
be updated every 2–5 years4. To select appropriate strains for vaccine 
application, the World Health Organization (WHO) has established a 
network of National Influenza Centers all over the world to monitor the 
spread and antigenic variation of influenza viruses5. Despite this global 
effort, vaccine recommendation still presents a significant challenge, as 
evidenced by vaccine mismatches in the past6–11.

Understanding the antigenic evolution of influenza viruses and 
their geographical transmission patterns is of critical importance for 
influenza prevention and control. Studies have indicated that sea-
sonal influenza epidemics are usually seeded from East and South-
east Asia12, suggesting that effective seasonal influenza surveillance 
should focus on these Asian regions. In particular, China has long 
been thought to have a pivotal role in global influenza transmission 
because of its temperate climate and diverse geographical features13. 
However, owing to a lack of sufficient viral data, influenza virus  
antigenic evolution in China and its impact on global influenza 
dynamics have not been adequately understood. Moreover, reports 
suggest that vaccine strain selection may be a particular problem in 
some Asian regions that are sources of new variants6,14.

Given the feasibility of rapid and high-quality sequence determi-
nation of HAs or even whole genomes of influenza viruses in influ-
enza surveillance15,16, development of sequence-based computational 
approaches has become an indispensable effort to understand the 
antigenic properties and characteristics of influenza virus evolution. 
The most widely used method is based on phylogenetic tree analy-
sis of viral HA genes or proteins17,18. Plotkin et al.19 used HA pro-
tein-sequence clustering to characterize the genetic evolution of the 
H3N2 virus. We have also reported that nucleotide co-occurrence 
network across the whole viral genome can capture the general 
characteristics of influenza antigenic patterns20. Recently, several 
other methods based on sequence information were designed for 
systematically genetic analysis of influenza virus21–24. These com-
putational works have clearly shown that modeling of the genetic 
relationships between HA or whole genome sequences of influenza 
viruses can provide invaluable information for the understanding of 
their antigenic evolutionary characteristics, holding great promise for 
rapid influenza surveillance and vaccine strain recommendation.

Smith et al.’s25 clear illustration that antigenic evolution of the 
H3N2 virus exhibits clusterwise evolutionary patterns, has demon-
strated that the antigenic evolution of the H3N2 virus can be viewed 
as the serial replacement of one antigenic cluster by another25–27. 
Therefore, an optimal vaccine strategy is one that targets an antigenic 
cluster with a vaccine strain of similar antigenicity. In this study, 
we introduce PREDAC, a computational approach that uses HA 
sequences to model the antigenic clusters of H3N2 viruses with high 
accuracy. The coupling of PREDAC with large-scale HA sequenc-
ing of >1,000 H3N2 viruses isolated during 1968–2009 from diverse 
regions of Mainland China has allowed us to gain a comprehensive 
picture of the antigenic evolution of H3N2 viruses in China. We 
further demonstrate that combining PREDAC with large-scale HA 
sequencing could improve vaccine strain recommendation against 
seasonal H3N2 viruses for China.

Results
PREDAC accurately models the antigenic clusters of H3N2 virus. 
PREDAC models the antigenic clusters of H3N2 viruses based on 

network representation of the predicted antigenic relationships 
between viruses (Fig. 1a). The antigenic relationship between each 
pair of viruses in a given group of H3N2 viruses was first predicted 
based on their HA sequences, and an antigenic correlation network 
(ACnet) was then constructed by connecting virus pairs predicted 
to be similar in antigenicity, measured by the log of the odds ratio 
(that is, the ratio of the predicted likelihood of being antigenically 
similar to the predicted likelihood of being antigenically distinct). 
Groups of viruses with similar antigenicity (denoted as predicted 
antigenic clusters) could then be identified from the ACnet. By 
using PREDAC, the antigenic evolution of the H3N2 virus can be 
viewed and analysed in terms of changes in the predicted antigenic 
clusters.

A key element of PREDAC is the accurate prediction of whether 
two influenza viruses are antigenically similar or distinct (that is, 
their antigenic relationship) based on their HA sequences. To this 
end, we devised a machine-learning model using a Naive Bayes  
classifier to integrate the structural and physicochemical features 
of HA (Fig. 1b). To build this feature-based model, 12 differences 
in the structural and physiochemical features of each pair of HA 
sequences were calculated, and a Naive Bayes classifier was then 
used to integrate these feature differences in order to predict the 
antigenic relationship between HA sequences. The model was 
trained using a training data set (Smith data)25 that consisted of 
3,681 antigenically similar HA pairs and 1720 antigenically dis-
tinct HA pairs (Methods). In 10-fold cross validations, the feature-
based model gave high prediction accuracy: 89.70% and 89.24% for  
antigenically similar and antigenically distinct pairs, respectively.

The performance of PREDAC in predicting antigenic clusters 
was assessed by the retrospective testing on the Smith data (train-
ing on data before 1990 and testing on data after 1990) (Fig. 1c). 
For ease of comparison, each observed antigenic cluster was labeled 
with a colour, and predicted antigenic clusters with more than 
one virus were circled. As shown in Fig. 1c, all five known anti-
genic clusters were identified by PREDAC, and of 174 viruses only 
10 viruses were predicted in the wrong clusters. We have further  
verified the high accuracy of PREDAC in predicting antigenic  
clusters by testing it on the recent A (H3N2) viruses surveyed in 
China, for which we will show later.

Moreover, to demonstrate whether PREDAC is able to provide 
real-time and accurate monitoring of the emergence of antigenic 
clusters, we monitored the development of a recent antigenic cluster 
PE09 (A/Perth/15/2009-like strains) by applying PREDAC to the 
large-scale HA sequences determined during influenza surveillance 
by the Chinese Center for Disease Control and Prevention (China 
CDC). PREDAC detected its predominance in May 2009 (Fig. 1d). 
To test whether our computational detection is both timely and  
accurate, we used the haemagglutination inhibition (HI) assay to 
determine the antigenic properties of 54 viruses isolated between 
March and August, 2009 (Supplementary Table S1). The HI assay 
showed that ~90% of the predicted antigenic variants isolated after 
May 2009 were indeed antigenically different from the vaccine strain 
of the last predicted antigenic cluster (≥fourfold titer), and ~71% of 
the viruses isolated in March and April did not change their anti-
genicity ( < fourfold titer). Therefore, we have developed an effective 
sequence-based informatics method to model influenza antigenic 
evolution.

Large-scale sequencing and analysis of H3N2 HAs in China. For 
a better understanding of the antigenic evolution and transmission 
of H3N2 viruses in China, we carried out large-scale sequencing 
of HA from 1,071 H3N2 viruses isolated between 1968 and 2009 
from a variety of representative regions in Mainland China (Sup-
plementary Data 1). Figure 2a shows a phylogenetic tree for 1,438 
H3N2 viruses isolated in Mainland China (including 367 viruses 
whose HA sequences were determined previously). Although  
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phylogenetic analysis has been widely used to understand the genetic 
evolution of the influenza virus, using the method to delineate the 
virus antigenic evolution is not straight forward25. We applied PRE-
DAC to construct an ACnet and predict antigenic clusters for the 
1,438 H3N2 viruses (Fig. 2b). In total, 20 antigenic clusters were 
identified, 17 of which were considered as dominant antigenic clus-
ters as each of them included >50% of the viruses in at least one 
season (Fig. 2b, Supplementary Table S2). The 17 predominant anti-
genic clusters included ~99% of the viruses, and each of the clusters  
persisted for one to five seasons (Fig. 2b).

Predicted antigenic clusters capture H3N2 evolution in China. 
We further evaluated whether the predicted antigenic clusters 
accurately describe the actual antigenic patterns of the H3N2 virus 
in China. When the vaccine strains recommended by WHO and 
other candidate vaccine strains characterized by China CDC were 
included in the modeling, we found that all the antigenically distinct 
vaccine strains and candidate vaccine strains were separated into 
different predicted antigenic clusters (Fig. 2b and Supplementary 
Table S2, additional vaccine strains were included). Moreover, most 
of the H3N2 viruses isolated in China tended to cluster with these 
vaccine strains. Notably, of the 17 predicted predominant antigenic 
clusters, 16 contained vaccine strains and candidate vaccine strains 
of similar antigenicity. The accurate assignment of vaccine strains to 
the predicted antigenic clusters indicates the effectiveness of PRE-
DAC in modeling the antigenic evolution of H3N2 viruses in China. 
When comparing with the China CDC-monitored antigenic data 
for the H3N2 viruses circulated from 2002 to 2009 using HI assays, 
we obtained an even closer fit between the observed and predicted 
antigenic clusters, further validating our approach. According to the 

China CDC surveillance results, the H3N2 viruses circulated from 
2001–2002 to 2009–2010 seasons formed five groups with distinct 
antigenicity (Fig. 2c). For these viruses, PREDAC also predicted five 
antigenic clusters that matched those characterized by the China 
CDC (Fig. 2c). The above tests demonstrate that PREDAC-pre-
dicted antigenic patterns accurately capture the antigenic evolution 
of H3N2 viruses in China.

Comparative analysis of predicted antigenic clusters. As shown 
in Fig. 2b, the predicted ACnet and antigenic clusters vividly depict 
the antigenic patterns of H3N2 viruses in China. Interestingly, the 
changes of the predicted antigenic clusters follow a trunk-like pat-
tern; most of the antigenic clusters are located on the main trunk. 
However, we observed two branches off the trunk: one contains 
A/Beijing/353/1989-like strains (BE89) and the other contains 
A/Jiangxidonghu/312/2006-like strains (JX06). A close examina-
tion of the two branches further reveals the special patterns of local 
dominance of H3N2 virus in China and their impacts on the global 
transmission. The BE89 was first detected in China and was sug-
gested as vaccine strain by WHO, but it was unable to replace the 
old antigenic cluster A/Sichuan/1/1987-like viruses (SI87) in China. 
However, in Europe and North America, the BE89 indeed displaced 
SI87 and became dominant during 1990–1991 (Fig. 3). Interestingly, 
JX06 was also first detected and became dominant in China during 
2006–2007, but it did not get chance to become dominant in Europe 
and the USA (Fig. 3).

To better understand the dynamic changes in influenza antigenic 
patterns in China and their impact on global transmission, PRE-
DAC was applied to model the antigenic evolution of 9,386 H3N2 
viruses collected from all over the world during 1968–2009 (includ-
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Figure 1 | Development of PREDAC for modeling the antigenic evolution of the H3N2 virus. (a) The flowchart of PREDAC. (b) The prediction of antigenic 
relationship by using a feature-based naive Bayes classifier (feature-based model). This model maps structural and physicochemical features of HA  
(X1…X12) to antigenic relationships (Y) through naive Bayes theorem. {0, 1} values of Y indicate similar (0) or distinct (1) antigenicity between two 
viruses. {0, 1} values of X indicate that discretized features differed between two HAs. (c) Evaluation of the PREDAC in identifying antigenic clusters. In 
the evaluation, the smith data25 was divided into two parts. one part, which consists of antigenic relationships between the viruses isolated before 1990, 
was used to develop PREDAC. The other part, which forms five antigenic clusters among the viruses isolated after 1990, was used to evaluate PREDAC. 
The five known antigenic clusters (named as original clusters from work of smith et al.25) are colour-coded, and the predicted antigenic clusters with two 
or more viruses are circled. (d) The use of PREDAC for monitoring the emergence of the recent antigenic cluster PE09 (A/Perth/15/2009-like strains) 
during 2009. The PE09 antigenic cluster (dark cyan) became predominant in the may of the 2009–2010 season based on our prediction (top panel) and 
lab confirmation by the China-CDC (bottom panel).
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ing 1,071 newly sequenced viruses from China). For comparison, we 
tracked dynamic changes in predicted antigenic clusters in China, 
the United States and Europe during 1983–2008 (Fig. 3), a period 
when there was sufficient viral data for these regions. As seen in 
Fig. 3, of the 10 predicted antigenic clusters that were predominant 
in at least one season during the past >20 years, 10 such antigenic 
clusters were observed in China, only one cluster emerged later 
than those identified in the United States or Europe (left-pointing 
arrow), the remaining nine clusters being either only predominant 
in China (two clusters marked by stars), emerging earlier than those 
identified in the United States or Europe (three clusters, right-point-
ing arrows) or emerging at the same time (four clusters marked  
by dots).

To generate stronger statistics and avoid sampling bias with 
respect to region and time, we performed a simulation by randomly 
choosing 10 sequences from each location (China/the United States) 
in each year. The simulation was performed 1,000 times. We found 
that in 70% of the simulated cases, China is more likely to have more 
dominant antigenic clusters than the United States. Moreover, for 
novel antigenic clusters, in 95% of the simulated cases they are more 
likely to emerge first in China than in the United States. The obser-
vation that China is more likely to lead global influenza transmission 
than the the United States or Europe was even more evident (Supple-
mentary Fig. S1), when we made a fine month-by-month compari-
son based on recent influenza seasons during 2002–2008, a period 
for which we were able to obtain sufficient monthly information.  
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Figure 2 | Characterization of the antigenic evolution of the H3N2 virus in China. (a) Phylogenetic tree of HA1 protein sequences of 1,438 viral isolates 
from mainland China (additional vaccine strains were included). (b) Predicted ACnet and antigenic clusters for the 1,438 viruses from mainland China 
(additional vaccine strains were included). The predicted antigenic clusters are coloured and named according to the vaccine strains (location in the 
tree and network are directed by the line) contained in the clusters. The time of dominance for each cluster is given in parentheses. (c) Validation of 
the predicted antigenic clusters for viruses isolated from 2002–2010. The dynamic changes in the percentage of antigenic clusters were recorded on 
a monthly basis for recent clusters. The bottom two panels show the distributions of predicted dominant antigenic clusters and the actual dominant 
antigenic strains reported by the China CDC in each influenza season between 2001–2002 and 2009–2010. A dominant cluster was defined as one in 
which >50% of the viruses were present.
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Of the four predicted antigenic clusters, FU02 (A/Fujian/411/2002-
like strains), CA04 (A/California/7/2004-like strains), JX06 and 
BR07 (A/Brisbane/10/2007-like strains), three (FU02, CA04 and 
JX06) were clearly more advanced in China. Notably, when we 
looked at the dynamics of antigenic patterns within China by divid-
ing it into Northern China (temperate regions) and Southern China 
(tropical regions) according to Qin Mountain and Huai River (Sup-
plementary Data 1), we found that new antigenic variants are more 
likely to emerge first in Tropical China and then transmitted to 
Temperate China (Supplementary Fig. S2), although such difference 
has not been observed between Coastal China and Mainland China  
(Supplementary Fig. S3).

PREDAC improves vaccine strain recommendation for China. 
The greater antigenic diversity and leading role in global influenza 
transmission could confound flu control efforts in China. Here, we 
would like to ask whether the coupling of large-scale HA sequenc-
ing with PREDAC during influenza surveillance could improve 
vaccine strain recommendation for China. Figure 4a illustrates the 
procedure of vaccine recommendations made on March 15 using 
a threshold percentage of 15% by modeling the dynamic changes 
in predicted antigenic clusters of H3N2 viruses in China during 
2002–2009.

For better vaccine strain recommendation, we investigated 
how key parameters of the program affect the efficiency of vaccine 
strain prediction (Supplementary Methods). Table 1 summarizes 

how the two key parameters, namely threshold percentage and 
prediction date, affect vaccine strain predictions for China for the 
seven influenza seasons from 2002–2009. As shown in Table 1, the 
appropriate choice of parameter combinations can lead to the best  
possible protection of H3N2 virus in China. Notably, when we chose to  
recommend vaccine strains in mid-March (1 month later than the 
mid-February date used by the WHO), six of the seven predicted 
vaccine strains matched the actual circulating strains in China 
(comparing panels 1 and 3 of Fig. 4b), significantly better than the 
WHO-recommended vaccine strains, which had only two matches 
for China (comparing panels 2 and 3 of Fig. 4b).

Discussion
In this study, through development of an effective computational 
framework coupled with determination of HA sequences of >1,000 
H3N2 viruses isolated during 1968–2009 from diverse regions of 
Mainland China, we have not only mapped the antigenic evolution 
of H3N2 viruses in China, but also proposed an effective influenza 
surveillance program for flu planning in China.

Timely and accurate recommendation of vaccine strains is criti-
cal for influenza prevention and control. Despite the global efforts, 
the current vaccine strain recommendation strategy has caused sig-
nificant lags for China (comparing panels 2 and 3 of Fig. 4b). As 
indicated by our study, the prediction lags for China could be partly 
because of the lack of sufficient data for vaccine strain decision and 
partly because of the rapid decline and rise of strains after vaccine 
strain recommendations (Fig. 3). Therefore, how to implement an 
effective seasonal influenza-monitoring program in China is critical 
for its vaccine strain recommendation. Owing to the rapid devel-
opment of sequencing technology, DNA sequencing is becoming 
cheaper and faster, which can make the sequence data available even 
in a couple of days. Moreover, compared with HI data, sequence 
data is very reliable and will not vary from one lab to another. Large-
scale sequencing is now widely used in influenza surveillance28,29.

To accompany the large-scale sequencing effort in influenza 
surveillance, our work has further developed a sequence-based 
program for effective antigenicity inference. We demonstrated that 
the informatics framework PREDAC we developed can effectively 
infer antigenic clusters from HA sequences, and thus can provide a 
very important tool in the influenza surveillance and vaccine strain 
recommendation when coupled with large-scale HA sequencing. 
Previously, many computational approaches were designed to either 
predict antigenic variants18,30–36 or to model evolutionary patterns 
for the H3N2 virus19–21,23,24. In our study, the prediction of anti-
genic variants and the modeling of antigenic evolutionary patterns 
are integrated into one computational framework, PREDAC. In 
developing models for predicting antigenic relationships, previous 
efforts mainly relied on changes in specific amino acids at certain 
residues that have been observed in the evolution of influenza virus 
HA (called site-dependent models). Our work, however, directly 
considers 12 structural and physicochemical features of HA that 
are reported to or are thought to affect the antigenic properties of 
influenza HA. We have demonstrated that our feature-based model 
can predict antigenic relationships with high accuracy (the con-
tributions of individual features are given in Supplementary Table 
S3). The feature-based model is a more generalized model that does 
not rely on specific amino-acid changes, and is thus able to model 
antigenic changes due to new amino-acid changes. Moreover, by 
integrating the highly accurate prediction of antigenic relationships 
into a network model, the computational approach developed here, 
PREDAC, is reliable for modeling influenza antigenic patterns. We 
have demonstrated the effectiveness of PREDAC in modeling the 
antigenic clusters for the viruses isolated from Mainland China, 
which accurately matched the antigenic patterns observed by China 
CDC (Figs 1d and 2c). As a machine learning-based method, PRE-
DAC could be further improved by using more representative and 
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Figure 3 | Comparison of antigenic patterns of H3N2 viruses between 
different regions during 1983–2008. Dynamic changes in the percentage 
of antigenic clusters were recorded on a yearly basis for China, the united 
states and Europe. For comparison, only the predicted dominant antigenic 
clusters that contain >50% of the viral isolates in at least 1 year in any 
of the three regions were considered. The emergence time of a novel 
predicted dominant antigenic cluster in a location was defined as the 
earliest year when the cluster contained at least one quarter (25%) of the 
viral isolates in the location. symbols represent the predicted dominant 
antigenic clusters unique to China (star), the earlier (right-pointing arrow), 
or later (left-pointing arrow) emergence of predicted dominant antigenic 
clusters in China than the united states and Europe, and the emergence 
time of predicted dominant antigenic clusters being the same in all three 
regions (dot).
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accurate antigenic data during training and by incorporating other 
relevant features underlying HA-antibody interactions. As PRE-
DAC is a generalized model, it can be easily applied to the other two 
seasonal viruses with proper modification.

For its critical role in global influenza transmission, many ana-
lysts have put China under the spotlight. However, because of a lack 

of systematic analysis, much remains unclear regarding what the 
antigenic patterns are in China and how they affect global influenza 
transmission. The comprehensive picture of the influenza antigenic 
evolution in China has enabled us to explore the detailed antigenic 
evolution patterns in China and their impact on global influenza 
transmission, which has significantly deepened the understanding 
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Figure 4 | Automatic vaccine strain recommendations based on the H3N2 viruses monitored in China. (a) season by season vaccine strain 
recommendations for the influenza seasons from 2002–2003 to 2009–2010 based on the H3n2 viruses monitored in China before march 15 of each year 
from 2002–2009. Dynamic changes in predicted antigenic clusters were monitored by quarter. For clarity, the antigenic clusters prior to 2002 are not 
shown. Asterisks indicate the dates (march 15 in this case) for vaccine strain recommendation. Gray backgrounds indicate winter seasons in the northern 
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different clusters. (b) A comparison of the predicted and WHo-recommended vaccine strains for targeting dominant strains in China. Colours used 
represent clusters as in (a). Vaccine strains recommended by WHo (WHo-recommended vaccine) were extracted from the WHo website55–60.

Table 1 | Numbers of correctly predicted vaccine strains for China during the seven seasons from 2002–2003 to 2008–2009.

Date/threshold 5% 10% 15% 20% 25% 30% 40% 50%

Dec 31 3 4 4 4 4 3 2 2
Jan 15 3 3 3 4 3 3 3 2
Jan 30 3 3 4 4 4 3 3 2
Feb 15 3 4 4 4 4 4 3 2
Feb 28 4 5 4 4 4 4 3 2
mar 15 5 6 6 5 4 4 3 2
mar 30 6 6 6 6 6 6 4 2
Apr 15 6 6 6 6 6 6 5 4
Apr 30 6 6 6 6 6 6 6 4

The predictions were made on data from China at different dates and threshold percentages.
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of the dynamics and complexity in global influenza transmission. 
Our systematic work has not only revealed a greater antigenic  
diversity in China but also shown a significant difference in the time 
and magnitude of emergence of antigenic clusters between China 
and the United States/Europe. This complicates the global influenza 
prevention and control, underscoring the necessity and importance 
of development of effective local influenza planning strategies for the 
source regions. For example, the vaccine strain we predicted for the 
2002–2003 influenza season based on China data targeted Fujian-
like viruses. The Fujian antigenic cluster (FU02) indeed became 
dominant in China in the 2002–2003 influenza season (Figs 2c and 
3); however it did not dominate in the United States/Europe until at 
least one influenza season later37,38 (Fig. 3). The local dominance of 
some antigenic clusters also adds uncertainty to global vaccination 
planning. For example, the JX06 antigenic cluster was predominant 
in China during 2006–2007 season, but it did not dominate in the 
United States and Europe (Fig. 3). Recently Bahl et al.39 also showed 
that the seasonal H3N2 epidemics are geographically and tempo-
rally structured, suggesting localized annual epidemics. Therefore, 
in an effort to coordinate the global vaccine strategy, local planning 
of influenza prevention and control is critical40,41. Moreover, if an 
influenza variant can be contained locally, particularly where it 
emerges, this should benefit the rest of the world.

Methods
HA sequence data and sequence analysis. Large-scale HA sequencing of 1,071 
H3N2 viruses sampled from diverse and representative regions of Mainland China 
between 1968 and 2009 were carried out by the China CDC (366 from Northern 
China/Temperate region and 705 from Southern China/Tropical region, see  
Supplementary Data 1 for details). Other sequence data were downloaded from the 
National Center for Biotechnology Information Influenza Virus Resource16 (http://
www.ncbi.nlm.nih.gov/genome/FLU/FLU.html). All HA1 sequences were aligned 
with ClustalW42. A phylogenetic tree for the viruses isolated in China was con-
structed using PhyML43 version 2.4.5, with A/Beijing/1/1968 as the root. Detailed 
information regarding HA sequence data and sequence analysis is described in the 
Supplementary Methods.

A feature-based model for antigenic relationship prediction. To predict 
whether two viruses are antigenically similar or distinct (that is, their antigenic  
relationship), we developed a machine-learning approach (Fig. 1b). The develop-
ment of the method involves five steps described as follows:

We constructed a training data set. Recently, Smith et al.25 systematically char-
acterized the antigenic relationships between 253 viruses isolated between 1968 
and 2003 using a HI assay, and grouped these viruses into 11 antigenic clusters 
through data modeling. We refer to pairs of strains from the same antigenic cluster 
as antigenically similar pairs, and pairs of strains from different antigenic clusters 
are referred to as antigenically distinct pairs. Totally, there are 4,849 antigenically 
similar and 27,029 antigenically distinct pairs. In order to balance our training data 
set, also considering that 99% pairs with more than nine mutations are antigenic 
distinct pairs, we only consider pairs with no more than nine mutations as our 
training data set, which include 3,681 antigenic similar pairs and 1,720 antigenic 
distinct pairs.

We selected features that contribute to influenza antigenic changes. We con-
sidered 12 structural and physicochemical properties or features that have been 
reported to or are thought to affect the antigenic properties of influenza HA. These 
12 features include five known H3N2 virus HA epitopes, five physicochemical 
properties of amino acids (hydrophobicity, volume, charge, polarity and accessible 
surface area), receptor binding and glycosylation, which can be further classi-
fied into three groups. Group I includes the five known HA epitopes from the A 
(H3N2) virus44, as it is widely recognized that the extent of antigenic changes  
correlates with the number of mutations within these epitopes45. Group II includes 
the basic physicochemical properties of surface amino-acid residues that are 
thought to affect antigen–antibody interactions46. These physicochemical proper-
ties include hydrophobicity, volume, charge, polarity and accessible surface area 
of the amino acids. Group III includes the amino acids that are associated with 
receptor binding and glycosylation. As it has been recognized that influenza virus 
antigenic change is closely related to its receptor binding, and that glycosylation on 
HA can mask antigenic sites and help the flu virus to evade host immune surveil-
lance47,48, the amino-acid changes associated with receptor binding and glycosyla-
tion has important roles in the antigenic evolution of influenza virus.

We measured the differences in the 12 features between HA pairs. For feature j 
(j = 1, …, 12), its score for a given HA pair i (i  =  1, …, N. N is the total number of 
HA pairs in the training data is denoted as sij, and is computed as follows: when j 
refers to one of the five known epitopes, sij is calculated as the number of amino-

acid differences between i; when j refers to one of the five physicochemical  
properties, sij is calculated as the average change in quantitative values of j between 
i. The quantitative values of the five physicochemical properties for the 20 amino 
acids were obtained from the Amino Acid index database49 (the database entries 
FASG890101, GRAR740103, ZIMJ680104, CHAM820101 and JANJ780101 
recorded quantitative descriptions of hydrophobicity, volume, charge, polarity 
and accessible surface area of the 20 amino acids, respectively). If the number of 
sites with amino-acid changes was greater than three, only the top three sites with 
maximal changes were considered in the calculation of sij. When j refers to glyco-
sylation, sij is calculated as the number of changed glycosylation sites as predicted 
using NetNGlyc50 (the predicted glycosylation sites change about 0.1 site per year). 
When j refers to receptor binding, sij is calculated as the average of the shortest 
Euclidean distances between the sites with amino-acid changes and the three struc-
ture elements (130-loop, 190-helix and 220-loop) of the receptor-binding region51. 
The Euclidean distance between two residues was calculated between their respec-
tive C-α atoms. To calculate the shortest Euclidean distance of a mutated residue to 
the receptor-binding region, we first computed its Euclidean distances to all resi-
dues located in the three structure elements using the structure of A/Aichi/2/1968 
as template (pdb 1HGF)52, and then the shortest Euclidean distance was used in 
our study. If more than three mutations occurred, only the top three shortest Eucli-
dean distances were considered in the calculation of sij. On the basis of the above 
calculations, an HA pair i in the training data set can be represented by a vector 
(sij), j = 1, …, m; m = 12. Thus, given a training data set consisting of N (N = 5,401 
for Smith data) pairs of HA sequences with known antigenic relationships (denoted 
as y = (yi), i = 1, …, N: yi = 0 represents antigenic similarity and yi = 1 for differences 
in antigenicity), a score matrix S = (sij)N×m can be used to represent feature values 
for all HA pairs in the training data set.

We discretized each feature to avoid overfitting. Each feature was discretized 
using the method proposed by Yuan et al53. In brief, a threshold cut-off for the  
continuous scores sij corresponding to a feature is chosen so as to best distinguish 
the antigenic relationship in given training data set (the discretization cut-off 
values for the 12 features have been provided in Supplementary Table S4). The 
purpose of this process is to avoid overfitting by assigning only two values (0 or 1) 
to each feature53. Accordingly, the score matrix S becomes a 0–1 matrix, and it is 
denoted as X = (xij), i = 1, …, N; j = 1, …m.

Finally, we built a Naive Bayes classifier to predict antigenic relationships. The 
Naive Bayes classifier is a statistical learning method which has been widely used 
for classification problems in biology. For a given pair of strains, the values for the 
12-feature variables Xj (j = 1, …m) can be calculated based on their sequences. To 
predict the antigenic relationship Y (0, 1 represent antigenic similarity and differ-
ences in antigenicity, respectively) for the given pair of strains, we used the Bayes 
theorem: 
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Given a training data set that consists of label vector y = (yi, …, yN) and descre-
tized score matrix X = (xij), i = 1, …, N; j = 1, …m, the probabilities on the left side 
of equation (2) were derived by following Yuan et al.’s 54method: 
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Based on these probabilities determined using the training data set, the odds 
ratio can be easily calculated according to equation (2). If the odds ratio is >1, the 
antigenic relationship of the two viruses is regarded as antigenically similar, other-
wise as antigenically distinct. The greater the odds ratio is, the more likely it is that 
the two viruses are antigenically similar.

The model performance was assessed using cross validation and retrospective 
testing on the training data (details see Supplementary Methods).

Development of PREDAC for analysis of antigenic evolution. The PREDAC 
includes the following three steps (Fig. 1a). In step 1, for a group of viruses of interest, 
the antigenic relationships between there HA sequences were predicted using the 

(1)(1)

(2)(2)
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feature-based model described above. Then in step 2, all viral pairs predicted to be 
antigenically similar (odds ratio >1) were connected to generate ACnet. In step 3, 
to infer antigenic clusters, viruses from the ACnet with similar antigenicity were 
grouped using the MCL program54, which is designed for network clustering. Details 
regarding how to use MCL to identify antigenic clusters see Supplementary Methods.

PREDAC-based vaccine strain recommendation program. To recommend a vac-
cine strain based on a large-scale HA sequencing of H3N2 virus surveyed at  
different time points, we applied PREDAC to construct ACnets and further iden-
tify antigenic clusters for the viruses isolated from 1995 to the given date. Dynamic 
changes for the antigenic clusters were visualized as changes in the percentages of 
viral isolates belonging to an antigenic cluster each quarter. At the time of vaccine 
strain recommendation (for example, March 15 in Fig. 4a), if a new cluster emerges 
with a percentage over a certain threshold, called threshold percentage (15% for 
example in Fig. 4a), it is predicted to become dominant in the upcoming season. If 
two or more novel antigenic clusters exceeded the given threshold, the one with the 
highest percentage was considered. Therefore, the vaccine strain for the upcoming 
season needs to be updated. For example, as shown in Fig 4a, the novel antigenic 
clusters detected with a percentage of >15% by time of March 15 in 2002 (marked 
by brown), 2004 (blue), 2005 (green) and 2007 (scarlet) were recommended as 
vaccine strains for the winter seasons 2002–2003, 2004–2005, 2005–2006 and 
2007–2008, respectively. Otherwise, it was assumed that the antigenic cluster that 
dominated in the previous season would continue to dominate in the coming 
season, and it was not necessary to update the vaccine strain. 
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